Multiple Logistic Regression (Extra)
 Dr. Wan Nor Arifin

Unit of Biostatistics and Research Methodology, Universiti Sains Malaysia.
wnarifin@usm.my / wnarifin.pancakeapps.com

Checking linearity in the logit

- Checking linearity in the logit (by right in Step 2c)

1. Design variable approach
2. Fractional polynomials (in STATA)

Checking linearity in the logit

- Design variable approach:

1. Convert original continuous variable into 4-category categorical variable based on quartiles.
2. Fit multivariable logistic regression model, replacing the continuous variable with the new categorical variable.
3. Plot estimated coefficients vs group medians.

Checking linearity in the logit

- Create new variable:
- Transform \rightarrow Visual Binning... \rightarrow Variables to Bin: $d b p \rightarrow$ Continue
- Binning Variable: Enter dbp_cat
- Click Make Cutpoints...
\rightarrow Select Equal
Percentiles Based on Scanned Cases \rightarrow Number of Cutpoints:
 $3 \rightarrow$ Apply
- Click Make Labels \rightarrow OK

Checking linearity in the logit

- Perform Enter method with dbp_cat \& gender
- Make sure to properly assign dbp_cat as categorical variable properly.
- Copy the results into an Excel sheet.

Variables in the Equation

		B	S.E.	Wald	df	Sig.	$\operatorname{Exp}(\mathrm{B})$	95\% C.I.for EXP(B)		
		Lower						Upper		
Step $1^{\text {a }}$	gender(1)		. 866	. 394	4.832	1	. 028	2.377	1.098	5.143
	dbp_cat			9.746	3	. 021				
	dbp_cat(1)	1.427	. 689	4.285	1	. 038	4.167	1.079	16.093	
	dbp_cat(2)	1.354	. 697	3.778	1	. 052	3.872	. 989	15.165	
	dbp_cat(3)	2.130	. 693	9.444	1	. 002	8.416	2.163	32.746	
	Constant	-3.311	. 660	25.181	1	. 000	. 036			

a. Variable(s) entered on step 1: gender, dbp_cat.

Checking linearity in the logit

- Obtain median of dbp for each dbp_cat group:
- Data \rightarrow Split File \rightarrow Select Compare groups
- Set Groups Based on: dbp_cat \rightarrow OK
- Analyze \rightarrow Descriptive Statistics \rightarrow Frequencies
- Variable(s): dbp \rightarrow Click Statistics... \rightarrow

Statistics

1	N	Valid	51
		Missing	0
	Median		68.00
2	N	Valid	53
		Missing	0
	Median		76.00
3	N	Valid	55
		Missing	0
	Median		86.00
4	N	Valid	41
		Missing	0
	Med		100.00

- Copy the results into the Excel sheet.

Checking linearity in the logit

- Cont...

- Copy relevant values as follows in Excel (design_var.xls). *Set "0" for the first group.
- Then create a new SPSS dataset (File \rightarrow New \rightarrow Data)
- Copy the values into SPSS Data View.
- Rename the VAR00001 \& VAR00002 as coefficient and dbp.

Checking linearity in the logit

- Cont...
- Plot estimated coefficients vs group medians
- Graphs -> Legacy Dialogs -> Scatter/Dot -> Simple Scatter -> Define
- Y Axis: coefficient, X Axis: dbp -> OK
- Double click on the plot \rightarrow Elements \rightarrow Interpolation Line
- Should have an approximately straight line \rightarrow Linearity in logit assumption fullfilled.

Logistic regression diagnostics

- In STATA, based on covariate patterns.
- In SPSS, limited and not based on covariate patterns:
- Change in estimated coefficients (after deleting a case) vs predicted probabilities
- Click Save... \rightarrow Tick Cook's under Influence
- A new variable COO_1 will be created.

- Plot COO_1 vs PRE_1
- Values should be<1 (Hosmer \& Lemeshow, 2000).

Q\&A

