Multiple Logistic Regression (Extra)

Dr. Wan Nor Arifin

Unit of Biostatistics and Research Methodology, Universiti Sains Malaysia.

wnarifin@usm.my / wnarifin.pancakeapps.com

Wan Nor Arifin, 2015. Multiple logistic regression (extra) by Wan Nor Arifin is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

IBM SPSS Statistics Version 22 screenshots are copyrighted to IBM Corp.

Intermediate Statistics

• Checking linearity in the logit (by right in Step 2c)

- 1. Design variable approach
- 2. Fractional polynomials (in STATA)

• Design variable approach:

- 1. Convert original continuous variable into 4-category categorical variable based on quartiles.
- 2. Fit multivariable logistic regression model, replacing the continuous variable with the new categorical variable.
- 3. Plot estimated coefficients vs group medians.

- Create new variable:
 - Transform → Visual
 Binning... → Variables
 to Bin: dbp → Continue
 - Binning Variable: Enter dbp_cat
 - Click Make Cutpoints...
 → Select Equal
 Percentiles Based on
 Scanned Cases →
 Number of Cutpoints:
 3 → Apply

- Perform Enter method with *dbp_cat* & *gender*
- Make sure to properly assign *dbp_cat* as categorical variable properly.
- Copy the results into an Excel sheet.

								95% C.I.for EXP(B)	
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	gender(1)	.866	.394	4.832	1	.028	2.377	1.098	5.143
	dbp_cat			9.746	3	.021			
	dbp_cat(1)	1.427	.689	4.285	1	.038	4.167	1.079	16.093
	dbp_cat(2)	1.354	.697	3.778	1	.052	3.872	.989	15.165
	dbp_cat(3)	2.130	.693	9.444	1	.002	8.416	2.163	32.746
	Constant	-3.311	.660	25.181	1	.000	.036		

Variables in the Equation

a. Variable(s) entered on step 1: gender, dbp_cat.

- Obtain median of dbp for each dbp_cat group:
 - Data → Split File → Select Compare groups
 - Set Groups Based on: dbp_cat → OK
 - Analyze → Descriptive Statistics →
 Frequencies
 - Variable(s): dbp → Click Statistics... →
 Median under Central Tendency
 - Copy the results into the Excel sheet.

Statistics

Diastolic Blood Pressure

1	Ν	Valid	51
		Missing	0
	Median		68.00
2	Ν	Valid	53
		Missing	0
	Median		76.00
3	Ν	Valid	55
		Missing	0
	Median		86.00
4	Ν	Valid	41
		Missing	0
	Median		100.00

• Cont...

- Copy relevant values as follows in Excel (*design_var.xls*). *Set "0" for the first group.
- Then create a new SPSS dataset
 (File → New → Data)
- Copy the values into SPSS Data View.
- Rename the VAR00001 & VAR00002
 as coefficient and dbp.

М	N	
coefficient	median	
0	68	
1.427	76	
1.354	<mark>86</mark>	
2.13	100	

<u> </u>			
	coefficient	dbp	Va
1	.00	68.00	
2	1.43	76.00	
3	1.35	86.00	
4	2.13	100.00	
5			
6			

• Cont...

- Plot estimated coefficients vs group medians
- Graphs -> Legacy Dialogs ->
 Scatter/Dot -> Simple Scatter
 -> Define
- Y Axis: coefficient, X Axis: dbp
 -> OK
- Double click on the plot →
 Elements → Interpolation Line
- Should have an approximately straight line → <u>Linearity in logit</u> assumption fullfilled.

4 Oct 2016

Intermediate Statistics

Logistic regression diagnostics

- In STATA, based on covariate patterns.
- In SPSS, limited and not based on covariate patterns:
 - Change in estimated coefficients (after deleting a case) vs predicted probabilities
 - Click Save... → Tick Cook's under Influence
 - A new variable COO_1 will be created.
 - Plot COO_1 vs PRE_1
 - Values should be < 1 (Hosmer & Lemeshow, 2000).

4 Oct 2016

Intermediate Statistics

